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For locally isotropic, homogeneous fluid turbulence, a digital Fourier analysis 
method of measuring directly the net scalar and velocity spectral transfer Tn(k) 
of scalar and kinetic energy to a pa;rticular wavenumber from all other wave- 
numbers is described and applied to heated-grid turbulence. The technique uses 
the imaginary part of a particular cross-spectrum to obtain the one-dimensional 
net spectral transfer function L,(k,) of velocity and scalar turbulence, and is 
a, refinement of that used previously by Van Atta & Chen for measuring the 
velocity kinetic energy transfer. 

The detailed spectral transfer T,(k, k‘) from one wavenumber to any other is 
related to the imaginary part of a particular three-dimensional bispectrum. 
Tn(k, k’) can be, in principle, computed from a particular two-dimensional triple 
correlation. Unlike Tn(k), which can be obtained from L,(k,), T!(k, k’) cannot be 
determined from the measurable one-dimensional bippectrum Bl, ,, ,(k1, k;) nor 
the one-dimensional transfer spectrum L,(k,, k;). 

The measured net transfer spectra T,(k) have been used to determine the extent 
of validity for heated-grid turbulence of the dynamical equations for the three- 
dimensional power spectra of temperature and velocity in locally isotropic 
turbulence. The measured temperature transfer spectrum is also compared with 
those obtained from the power spectra of velocity and temperature by using 
various simple hypotheses. 

1. Introduction 
We consider here a locally isotropic, passive temperature field coupled with 

a locally isotropic velocity field, which may be approximately realized by intro- 
ducing a heated grid into a uniform flow. At a sufficient distance downstream 
from the heated grid the temperature and velocity fields approach 1oca.lly 
isotropic conditions (Kistler, O’Brien & Corrsin 1956; Mills, Kistler, O’Brien & 
Corrsin 1958). The present study is restricted to an incompressible fluid, and 
temperature fluctuations sufficiently small that the density is effectively con- 
stant, and buoyancy forces arenegligible. Thus the thermal field does not influence 
the momentum equation and the scalar quantity is a passive tracer. 

The determination of the transfer process between any arbitrary pair of wave- 
numbers produced by the nonlinear inertial forces is the central problem in 
understanding the decay of a homogeneous turbulent field. The original goal of 
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the present investigation was to carry out an experimental study of the three- 
dimensional bispectrum functions which describe the detailed balancing of the 
spectral transfer from one wavenumber to another. However, the present analysis 
indicates that available experimental techniques are not well suited for such 
a study, and the required measurements are sufficiently complex as to appear 
marginally desirable a t  present, Hence the present experiments consider only 
the much simpler problem of measurement of the net spectral transfer to a par- 
ticular wavenumber from all other wavenumbers. 

For velocity fluctuations alone, the kinetic energy transfer spectrum has been 
measured indirectly by Uberoi ( 1963) and both directly using triple correlations 
and also indirectly from the spectrum by Van Atta & Chen (1969) (here often 
referred to as I and 11, respectively). In  this study a conceptually different 
method of direct measurement of net scalar and velocity spectral transfer by 
using digital harmonic analysis was employed. The method uses the imaginary 
parts of certain cross-spectra, which correspond to one-dimensional integrals of 
one-dimensional bispectra of velocity and scalar fluctuations. 

2. Basic equations 
The derivations which follow are based on those found in Batchelor (1953), 

Hinze (1959) and Monin & Yaglom (1967). The governing equations describing 
the fluid motion and the distribution of temperature in an incompressible flow are 

au,lax, = 0, 

where ui(x) (i = 1,2 ,3)  and 8(x) me the velocity and temperature fluctuations, 
respectively; v and vg are the kinematic viscosity and the coefficient of molecular 
diffusion of temperature, respectively. 

After taking the Fourier transform of (1)  and using the incompressibility 
condition to eliminate the pressure we have 

kiFi(k) = 0, 

where Pfi(k) = Fz(  - k) = [ 1 /u,(x) exp { - ik.x)dx, 

J 
J J J  

in which n = 1 , 2 , 3  or 8, with u,(x) = 8(x), and * denotes the complex conjugate. 
From (2), the spectral equations for turbulent velocity and for turbulent 

temperature fluctuations can be written in the same form as 
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where @ n , ? m  = A ~ 3 ( E w c m )  (5 )  

are the three-dimensional power spectra and 

T,( k, k’ ) = ti( Ak)3 Ic,( 3’; (k - k’ ) F z  ( k  ) I?,( k) - E;( k - k’ ) F z  (k) Fn( k’ ) ) , ( 6) 

where Ak is the wavenumber increment in the discrete Fourier transform. The 
subscript n refers to quantities for either the velocity field or the temperature 
field. The repetition of the index n indicates summation, e.g. 

@n,n @i,i @ 1 , 1 + @ 2 , 2 + @ 3 , 3  

for velocity, while it is fixed (e.g. @n,n = @e,s) and not summed for the temper- 
ature field. This notation will be used throughout this paper. 

Thus, from (4), the T!(k, k’) may be interpreted (see, for example, Batchelor 
1953, equation 5.2.7) as the net rates of spectral transfer from the volume 
element d k  to  the element dk in wavenumber space. These spectral transfer 
functions are due to the inertial forces without regard to the pressure fluctuations. 
They satisfy a conservation law, since they are antisyminetric with respect to k 
and k’, i.e. T’(k, k’) = - Tn(k’, k). 

The double ccrrelations are defined as 

%,m(r) = (u,(x) u,(x + r)) 

&,,, n(r, r’) = (%(X) u,(x + r) u,(x + r’)). 

( 7 )  

and the three-point triple correlations as 

(8) 

Their Fourier transforms, with the aid of the convolution theorem, can be 
expressed as 

where Q,, , is called the three-dimensional energy spectrum tensor, which 
reduces to (5) if n = m; and 

= Ak3(4(k”) F,(k’) Fn(k)), with ki-  k + k” = 0. (10) 

Bl, n,m is called the three-dimensional bispectrum and represents the spectral 
contributions to the three-point third-order correlation of a random variable from 
the product of three Fourier components whose resultant wavenumber is zero. 
The symmetry properties of the bispectrum for n = m are obtained immediately 
from (10): 

4,,,?&k) = BIT,,n(-k, -k‘) = 4,?z,n(k’,k) 
= B,,ZJk’’, k) = fL,l,n(k”, k’) 
= &&,?&,& k”) = B7&,n,dk’, k”). (11) 

The main motivation for studying the bispectrum of turbulence would thus 

In  general, the bispectrum does not necessarily indicate a nonlinear effect in 
be to investigate certain nonlinear properties such as spectral energy transfer. 
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an inhomogeneous random field. Inhomogeneity implies phase consistency be- 
tween pairs of wavenumbers, and this leads to phase consistency between 
triplets, which produces non-vanishing bispectrum. Grid-generated turbulence 
is considered to be locally homogeneous and near Gaussian. Small but crucial 
deviations from normality exist because of the nonlinearities in the equations of 
motion. These can be determined to the first order by measuring the bispectrum 
or the specttral transfer. We note that several investigators, Brillinger (1965), 
Rosenblatt & Van Ness (1965) and Haubrich (1965), have studied one- 
dimensional bispectra of various stochastic variables both theoretically and 
experimentally. 

After the expression for the bispectrum, equation (lo), has been substituted 
into (6), the transfer spectrum function Tn(k, k') can be expressed as 

Tn(k, k') = &k[Bl,n,n(k, -k')-B?n,n(k -k')I 
= - k, Im [Bl, n,n(k, - k ) 1 9  (12) 

where Im denotes the imaginary part. Thus, measurements of the bispectrum 
give the spectral energy transfer from one particular wavenumber to another 
wavenumber. The transfer function T,(k, k )  depends only on the imaginary 
part of the bispectrum Bl,m,m(k, k'). 

For an isotropic field, the bispectrum B , , , ,  is a purely imaginary quantity; 
thus (12) reduces to 

(13) T,(k, k )  = iklBi,n,n(k, - k'). 

Therefore, if the three-point triple correlation Rg,n,n(r, r') or the corresponding 
bispectrum Bl,n,n(k, k') is known, the detailed balancing of the three-dimensional 
wavenumber transfer spectrum Tn(k, k') from one wavenumber to another in the 
turbulent field is known. 

3. Symmetry conditions and possible measurements 
Although the full three-dimensional wavenumber expressions are of basic 

interest, no known way exists to make direct measurements of the necessary 
quantities. With the aid of Taylor's hypothesis of a, 'frozen ' turbulent structure 
(Lin 1953; Lumley 1965; Comte-Bellot & Corrsin 1971) the experimenter can 
make a Fourier analysis with respect to one space co-ordinate only. The three- 
dimensional form may be reduced to simpler forms by applying the isotropic 
symmetry conditions to see whether they become simple enough for laboratory 
measurement. 

Prom Batchelor (1953) or Hinze (1959), the three-dimensional power spectrum 
E,(k) in terms of the one-dimensional power spectrum is 

= - kd$nn(k)/dk, (14) 

where dQ, denotes an integration over all solid angles while keeping a fixed 
value of k. 
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The quantity 
4s,,(kl) = Jj@.,&) dk, dk3 

= (2n)-1~.,,(r,)expi-iklyl}drl 

= W U Z ( k 1 )  Un(k1)) 

is the one-dimensional power spectrum; 
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= 2?l /un(xl, 0,O) exp { - iklxl}dx, (n = I, 2,3,  or 0) (16) 

is a one-dimensional Fourier transform of u,(x). Thus, (14) and (15) give 

and the three-dimensional dissipation spectrum 

(18) 

Following Robertson (1940) or Batchelor (1953), and using the incompres- 
sibility condition, the first-order isotropic tensor Bl, n, ,(k, k) involving two 
vector variables can be written in general as 

(19) Bi ,n ,n (k  k’) = An(k,Pk, k’) [ ( k ‘ 2 f k v P k )  kt-(k2+kk;Uk)kiI, 

where A,(k,pk, k‘) = - An(k’,pk, k) and pk = k.  k’lkk’. 
Thus from (13) 

T ! ( k ,  k’) = Tn(k, - k‘)d!&dClV ss 1 
= i8?r2lCP4/-/,(k.p,, k‘) (1 -p l )dpk  

= i 8 ~ 1 ~ k ~ k ’ ~ A , ( k ,  k’). (20) 

The following discussion indicates what kind of information about the spectral 
transfer may or may not be obtained experimentally. 

One-dimensional bispectrum B,, n, n( k,, k;) 
A one-dimensional bispectrum Bl,,,,(kl, k;) may be defined by integration of the 
three-dimensional bispectrum B1,n,n(k, k )  over all values of the lateral com- 
ponents of wavenumber, k, and k3, from (10): 

= Ak(U,(K;) U,(k;) Un(kl)}, with k, + ki + k’; = 0.  (21) 
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The one-dimensional bispectrum can be easily obtained and, from it, the co- 
linear three-point triple correlation R1,n,n(rl, 0,O; r;, 0,O) can be determined. In  
a study of multi-point velocity correlations, Van Atta & Yeh (1970) adopted 
a modified but similar method to calculate these correlations. 

Substitution of (19) into ( 2 1 )  yields 

= ~~~~~k'~k~~k'ldk'S::f,(le,iLk, k'; k,, k;)dpk, (22 )  

p* = {it$; & [(k2 - k!) (k'2 - Ic;yjs)/klc' 
and 

f . (k ,pk ,  k'; k1, k;) = An(Ic,pu,, k') [(k'2 + kk'pk) k1- (k2 + kk'ib~k) &I 
x [k2F2( 1 -p i )  - (k1 k' - - 2k1 k; kY( 1 - ,!~k)]-$, ( 2 3 )  

in which the isotropic conditions have been employed. 
The one-dimensional bispectrum Bl, n, n(kl ,  hi) gives only integral information 

about the three-dimensional bispectnxm, which is insufficient to determine the 
function An(k,,ufc, k'), or its angular integral &(k, k'). Consequently, it is no6 
possible to determine the transfer function Tn(k, k') from the one-dimensional 
bispectrum. The one-dimensional bispectrum of un(t) completely specifies the 
three-point collinear triple correlation, so that there is, in principle, no more 
information obtainable from single-probe measurements which could be used to 
calculate Tn(k, k') .  

Three-point triple correlations in two-dimensional space 

The general form of the first-order isotropic tensor Rl, n,n(r, r') involving two 
symmetric vector variables (Robertson 1940; Batchelor 1953) can be written as 

J$,n,.n(r,r') = Rn(r ,pr , r ' ) r~+Rn(r ' ,~~~ , r ) r~ ,  ( 2 4 )  
where pr = r . r ' lrr ' , from which 

&, n, n(r1; rl, rL) = R2, n, n(r; r' , pr) = xn(r',  p y ,  r )  r'( 1 - p?)' 

or Rn(r',pr,r) = & , n , n ( r ; r ' , ~ r )  (r'(l-$)')F1 for pr@+ 1. ( 2 5 )  
After substitution of ( 2 5 )  into (24 ) ,  the triple correlation in the full three- 

dimensional space becomes 

r r' 
~l,n,n(r,r ')  = ( 1 - i ~ ) +  [ ~ R ~ , n , n ( ~ ' ; r , p r ) + ~ R z , n , n ( r ; r ' , p r ) ]  for pr c 1, 

= cos (I, r )  R1,n,n(r, r ' )  for pr = 1, (26 )  
where cos (I, r )  is the direction cosine of the angle between the vector r and the 
x, axis. 

Prom the above, the transfer spectrum T,(k,k') may be obtained, but the 
measurement of two-dimensional triple correlations is a task of considerable 
magnitude; in fact, the measurement of R2,n,n(r ;r ' ,pr )  in an entire two- 
dimensional space would not only be digcult and laborious, but may also lead 
to problems of convergence for time series of reasonable length. 
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4. Net spectral transfer functions 
As discussed in previous sections, the spectral transfer from dk' to dk cannot 

be determined from the one-dimensional bispectrum function, and its determina- 
tion from two-dimensional triple correlations may not be practical. Here, the 
problem will be simplified t o  the net spectral transfer to dk from all other wave- 
numbers, that is, 

(27) 

The expression given for the transfer function T,(k, k') in (12) holds for any 
homogeneous flow, while equation (13) is good only for an isotropic field, in 
which the bispectrum function Bl,,,,(k, k )  is a pure imaginary number; i.e. the 
triple correlations Rl,n,n(r, r') are purely antisymmetrical functions of r and r'. 

In actual grid-generated turbulence, the bispectrd functions are found not to 
be purely imaginary quantities, so (12) instead of (13) should be used to express 
Tn(k, k) in locally isotropic grid-generated turbulence; however, the isotropic 
conditions will be applied here to simplify the problem. 

T,(k) = f j k n ( k ,  k )  dk'. 

Thus, the net spectral transfer is 

= -him [4,,,(k)l, (28)  

in which a new function, the cross-spectrum flln,,(k), is defined. From (10) 

c r r  

The last expression incorporates the isotropic condition for the cross-spectrum 
81n,n(k), a first-order single-variable tensor. 

Again, a, one-dimensional cross-spectrum Sln,n(kl) may be defined by in- 
tegrating the three-dimensional cross-spectrum Sin, ,(k) over all k, and k,. 
From (29),  LJln,,(kl) can be expressed in several different (but equivalent) ways 
as follows : 

Bl,n,,(kl, k;) dk; from (29a) and (21) ( 30a) = J  
1 
2n = - pl,, exp { - ikl rl]  dr, from (29 b) (30 b)  

= l p n ( k ) k l d k a d k ,  from (29c) 
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Equation (30c) is obtained from (30b) by using the convolution theorem, and 
defining a new basic measurable function similar to U,(k,) in (16): 

Uln(kl) = - u,(z)u,(x)exp(-ik,x}dx (n = 1,2,3,  or O), (31) 
2n ‘ S  

and in passing from (30d) to (30e) we have used cylindrical co-ordinates, i.e. 

(k,, k,, k,) -+ (k l ,  CT, $), with k2 = k: + cr2 = k:+ k$+ kg. 

Therefore, from ( 2 8 ) ,  (29c) and (32)) 

T,/,k) = - k2 Im [S,( k ) ]  

and thus T,(lc) = [Tn(k)dQ, = 4nk2T,(k) 

= 4Ln(k) - 2k:dLn(k)/dk, (34) 

where L,(k) = - kIm [S,,,,(k)] may be defined as the total one-dimensional 
spectral energy transfer. 

The cross-spectrum Sl,,n(k), which plays the role of a measurable transfer 
function, can be obtained in several ways: (a)  from (30a) by integration of the 
one-dimensional bispectrum (Brillinger 1965; Rosenblatt & Van Ness 1965; 
Haubrich 1965; Van Atta & Yeh 1970); ( b )  from (30b) by the Fourier transform 
of the two-point triple correlation R1n,n(~l) [previously measured for the velocity 
fieldingrid turbulence by Townsend (1947), Stewart (1951)) Stewart & Townsend 
(1951)) Frenkiel & Klebanoff (1967) and Van Atta & Chen (1968)) and for the 
mixed temperature-velocity field by Kistler et al. (1956) and Mills et al. (1958)l; 
or (c) from (30c) using the directly estimated cross-spectrum of 

u l n ( ~ )  = u ~ ( x )  u,(x) and un(x)- 

The last method is the most direct one for obtaining Sln,n(kl) and was adopted 
in the present study to calculate the transfer function T,(k). 

This method for obtaining Tn(k), the spectral transfer functions for both 
velocity and temperature fields, is essentially the same as that reported in I1 
by Van Atta & Chen for obtaining T,(k), the spectral transfer function for velocity 
kinetic energy. However, we have found a further justification for one of the 
steps and we have eliminated two unnecessary computational steps. In  measuring 



Spectral transfer of scalar and velocity Jields 241 

the transfer spectrum TJk) for fluid kinetic energy, Van Atta & Chen replaced 
the approximately antisymmetrical measured triple correlation R,, &rl) by an 
exactly antisymmetrical function, the composite triple correlation 

%i,&l) = *[Rli,&l) --Rli,i( -r1)1- 
We have found a further justification for this step. The original form of the 
transfer function suggests that (12) instead of (13) should be adopted when the 
flow field is not exactly isotropic. This means that the composite triple correlation 
9 1 i , i ( r l ) ,  instead of the triple correlation Rli,Jr1), should be used when T,(k) is 
obtained from the measured triple correlation. 

Because they were especially interested in the form of the triple correlations, 
Van Atta & Chen employed some unnecessary steps in obtaining Im (S1i,i(kl)], 
whereas we obtain Im  AS',^,^(^,)] more directly in the present work. In using the 
digital harmonic method, Van Atta & Chen obtained the cross-spectrum Sli,Jk1) 
(and therefore Im  AS,^,^(^,)]) first and then obtained the triple correlation 
Rli,i(rl) by taking the inverse Fourier transform of 81i,i(kl). They then formed 
the composite triple correlation gli, i(rl), and finally took its Fourier transform 
to obtain flli,Jk1). 

In  fact, the final quantity - iflli,i(kl) obtained by Van Atta, & Chen is the same 
as the first one, Im[Sli,i(kl)], which is immediately obtained in the first step 
given above. So it is possible, and perhaps desirable in some future applications, 
to skip the intervening steps. 

Referring to (30b), the imaginary part Im  IS',^,^(^,)] of the cross-spectrum can 
be expressed as follows : 

Im [Sli,i(kl)I = - *Wli,i@l) -fi:i,dkl)I 

- i  " 
27f - m  

= -j ~ l i , i ~ r l ~ e x p ~ - i ~ l r l > ~ r l  = - - i ~ , ~ , ~ k , ) ,  

where x",,,,(k,) is an imaginary number. 
The spectral functions discussed in the previous sections apply to both tur- 

bulent velocity and scalar variations. The formulation presented for three- 
dimensional spectral functions requires the measurement of two time series 
simultaneously, namely, u ( t )  and v(t)  for velocity fluctuations and u(t) and 6( t )  
for scalar fluctuations. However, in the present investigation, the passive scalar 
fluctuations were of primary interest, and only two signals, u ( t )  and O(t), were 
measured. Thus, some functions, such as q522(k1) and Slz,z(kl), which involve the 
lateral component of velocity v were not obtained directly. To obtain the three- 
dimensional spectra E,(k) and T,(k) for turbulent kinetic energy the one- 
dimensional spectra q522(kl) and S , ,  z ( k l )  were obtained from the measured q5,,(kl) 
and 8,,,,(k1) respectively by using the isotropic conditions (Batchelor 1953; 
Hinze 1959): 

+ZZ(kl) = *[+ll(kl) - kl dq5ll(kl)ldkll 
and SlZ,2@1) = t[flll,l(kl) - ~ l ~ ~ l l , l ( ~ l ) / d ~ ~ I -  (36) 

(35) 

16 F L M  58 
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5. Experimental arrangement 
The experiments were carried out in the 76 cm by 76 cm by 9 m test section of 

the low-turbulence wind tunnel in the Department of Applied Mechanics and 
Engineering Sciences. As in the experiments of Kistler et al. (1956) and of 
Mills et al. (1958), the velocity and temperature fluctuations were simultaneously 
generated by a heated grid, which in the present case was located 2.44 m from 
the end of the contraction section. The square-mesh biplane heated grid was com- 
posed of 36 stainless sheath calrod tubular heaters, model 5D74, manufactured 
by General Electric. The grid mesh size M was 4 cm, with rods of diameter 8 mm. 
A vertical array of 18 thermistors on a horizontal traverse was used to measure 
the local mean temperature profile across the test section. These signals were 
fed into the heated-grid power control box, consisting of nine individual control 
circuits, to act as a feedback system. This automatically maintained a desired 
flat mean temperature profile, and was used for the hot-wire and cold-wire 
calibrations. The circuit could also be controlled manually to maintain a fixed 
power supply to the grid. This manual operation was used for the turbulence 
measurements, since a constant power input is required to maintain the constant 
temperature rise across the grid needed for generating stationary temperature 
fluctuations. 

The power source for the heated grid was a 120 V, three-phase, 60 c/s alternating 
current. Gated-controlled full-wave silicon triacs were used to control the power 
in a full-wave on-off manner. The average power supplied to the grid therefore 
depended on the ratio of the power-on and power-off intervals. The minimum 
power-off interval was +G s; however, because of the very large thermal inertia 
of the rods, no 120 CIS periodic temperature component was detectable. In the 
present case, the rods were all heated evenly; hence the thermal mesh size was 
equal to that of the momentum mesh size. 

It was found that, near the grid, the outer tunnel-wall boundary-layer flows 
were heated by the walls. The wall temperature was higher than that of the 
fluid because of the radiation from the hot grid. Moderate radiation effects were 
also found in the readings of thermistors and thermometers for x/M < 30. 
Therefore the mean temperature was based on the reading at x/M = 50, where 
the radiation effects were negligible. Two thermometers were used to determine 
the mean temperature rise AT, across the grid and were located about 60 mesh 
lengths upstream and downstream from the grid. We also observed that stratified 
flow was developed at  low speeds when the tunnel was operated in the closed-loop 
condition. This was unsuitable for the present study of isotropic fluctuations. 
Although we could maintain a uniform mean temperature profile at  the test 
section by heating more in the lower rods, this clearly created non-uniform 
temperature fluctuations in the vertical direction, which was again not acceptable 
for this study. 

To avoid this problem, the wind tunnel was operated in an open-loop manner. 
This was done by removing the last test section and replacing i C  by a piece of 
plywood connected to the tunnel floor at  about a 30' vertical angle with respect 
to the axis of the test section or the mean flow direction. The heated air was 
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FIGURE 1. Mean temperature profiles across the tunnel. Horizontal: + , x /M = 35. 
Vertical: 0, x/M = 35; 0,  x/M = 40; x , x / M  = 46.6. 

deflected into the upper portion of the room and was eventually removed by the 
air-conditioning of the building, while colder air was sucked from the lower part 
of the room into the wind-tunnel intake. 

The mean flow velocity U was about 4*06m/s. The Reynolds number R, 
based on M and U was about 10500 and the corresponding PBclet number 
Pe, = PrR, was about 7650; Pr = 0.725 for the working fluid, air. The temper- 
ature rise across the grid was about 10 "C, and the mean temperature was about 
38 "C. The mean temperature was increased slowly during a run because of the 
temperature rise in the room (about 1.5 "C in 2 h). The mean temperature dis- 
tribution across the tunnel is shown in figure 1. 

The signal detection was complicated by the addition of temperature fluctua- 
tions to the usual velocity fluctuations (Corrsin 1947, 1949; Corrsin & Uberoi 
1951). It was not practical to use the hot wire to measure velocity fluctuations 
alone in the present case because of the limitations on the hot-wire temperature. 
The simultaneously recorded hot- and cold-wire signals were used to calculate 
the true velocity and temperature fluctuations. A very small platinum wire, 
0.25pm in diameter and 1 mm long, with a resistance of about 1.3 kQ was 

16-2 
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operated as a resistance thermometer (cold wire). A modified Tektronix &-type, 
a.c. strain gauge bridge (see, for example, Gibson & Schwarz (1963)) with a carrier 
frequency of 25 kHz and a bandwidth up to about 6 kHz was used to operate the 
cold wire. The overall frequency response of the thermometer was determined, 
using the method of Kidron (1966), by heating the cold wire with X-band micro- 
waves and was found to be flat up to about 5 kHz. A very small heating current 
of about 50pA was used to minimize the error due to velocity fluctuations. The 
bridge was balanced as close to zero as possible and the calibration was accom- 
plished by varying the power into the heated grid. This calibration provided 6, 
in the relation 

e2 = S28, 

where e2 is the output voltage fluctuation, 8, is the calibration constant and 8 is 
the temperature fluctuation. 

Both the temperature signal obtained by the cold wire and a mixed velocity- 
temperature signal, which was obtained from the hot-wire anemometer, were 
used to compute the longitudinal fluctuating component u of the velocity field 
at  nearly the same spatial location as the measured temperature fluctuations. 
The cold wire was parallel to and about 0.5 mm below the hot wire, and was out- 
side the thermal wake of the hot wire at  all times. The hot wire, here called the 
velocity wire, was standard I0  yo rhodium and 90 yo platinum, 5,um in diameter, 
I mm long, and responded predominantly to velocity fluctuations. A DISA 55A01 
amplifier was used to operate the hot wire at  constant resistance, with an overheat 
ratio of 0-6. The hot-wire response signal El can be written in general form as 
E2, = f( 0, p ) ,  where 0 and pare  the total velocity and temperature, respectively. 
For low intensities of velocity and temperature fluctuations, as in the present 
experiments, one may linearize the expression for the fluctuating voltage to 

(38) 
obtain 

(37) 

el = d(E2,) z E; - ( E ; )  z pl( U ,  T )  u + Sl( U ,  T )  0, 

where T, = [aE?/aU]U,T,  S 1 ( u 9  = ['E2,/BT1,,T' 

The calibrations were performed in the turbulent flow with temperature 
fluctuations, under the same mean conditions as those for which the turbulence 
measurements were made. The cold wire was calibrated over a range of a few 
degrees centigrade around T = 38 "C and U = 4.06 m/s. The hot-wire calibration 
was much more laborious. The output calibration voltages for about 50 different 
conditions of U and T were measured and used t o  fit a surface in the least- 
squares-error sense: 

(39) 

where the Ci (i = 0, ..., 5) are the constants to be determined. The calibration 
constants are functions of the mean velocity U and the mean temperature T :  

Eq( U ,  T )  = C, + Cl U i  + C2T i- C3 U i- C, U*T + C5 T2,  

and 
pl(U, T )  = C3+(C1+C4T)/2U4 
S l (U ,T)  = C2+C4U*+2C6T. 

For the turbulence measurements, the hot-wire and cold-wire signals were 
FM tape recorded simultaneously on magnetic tape at a tape speed of 76.2 cm/s 
using a Sanborn 391711 recorder. The analog tapes were later played back and 
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FIGURE 2.  One-dimensional spectra of temperature fluctuations (computer plot). 
_ _ _  , data of Mills et al., %/M = 17, arbitrmy units. 

the signals were band-passed (0.02 Hz-2 kHz) with Krohn-Hite filters, Model 
3750. The high-pass filter was used to remove the undesired mean drift due to 
the slow mean temperature rise of the room. The highest frequency, 2 kHz, for 
which the temperature spectrum was unmistakably distinguishable from elec- 
tronic noise was determined from a preliminary spectral analysis. The frequency 
f * = v/27r1, corresponding to the convection of the Kolmogorov microscale 1, 
past the probe at the mean flow speed wag about 1.2 kHz. The band-passed signals 
were then sampled with an analog-to-digital converter at a rate off, = 4170 
samples per second and recorded on digital tapes. The physical quantities u 
and 0 were then computed from the sampled digital data and stored on another 
digital tape using a CDC 3600 computer. These last digital tapes were used later 
as input data for evaluating various quantities. A sampling interval of 73.5s 
or 307 200 digital samples for both the hot-wire and cold-wire signals was found 
to be adequate to provide stationary values of the quantities calculated, and 
all subsequent averages were based on four samples of this length. 

Many of the detailed measurements to be discussed were made in the initial 
region of decay at x / M  = 35. For the determination of the spectral decay, 
measurements were made over a short range of z / M  in the initial period of decay. 

6. Experimental results Energy spectra 

The one-dimensional energy spectra were directly calculated from the discrete 
Fourier transforms of the time series for instantaneous values of u. and 8. The 
data were transformed in records each containing 2048 digital samples by using 
the fast Fourier algorithm method of Cooley & Tukey (1965). The measured 
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FIGURE 3. One-dimensional spectra of longitudinal velocity fluctuations (computer plot). 
0 ,  x / M  = 25, with grid cold; ---, data of Mills et al., x /M = 17, arbitrary units. 

spectra for temperature and velocity are shown in figures 2 and 3, respectively, 
along with the spectra obtained by Mills et al. 

Contrary to the results of Mills et d. (1958) the present measured temperature 
spectrum appears somewhat different from the measured velocity spectrum. 
The former has a roughly constant slope of about - for a short range of wave- 
numbers, while the latter does not. For the present small Reynolds number, the 
observed form of the temperature spectrum probably does not imply the existence 
of an inertial-convective subrange (Obukov 1949; Corrsin 1951; Batohelor 1959) 
and we have so far been able to give no satisfactory physical explanation for the 
appearance of the temperature spectrum. 

To test the assumption that the temperature fluctuations were dynamically 
passive, both velocity-spectra and turbulence-level measurements were made 
with and without heating the grid. As shown in figures 3 and 7, both the resulting 
spectra and the turbulence levels are identical within experimental uncertainty. 
This result is consistent with the fact that the calculated ratio ,!lgelrrlu' of the 
r.m.s. gravitational buoyancy acceleration and the actual r.m.s. particle accelera- 
tion (Uberoi & Corrsin 1953) was very small (about 1.5 x where g is the 
gravitational acceleration, /? the coefficient of thermal expansion for air and 7/ 

the Lagrangian time microscale of the turbulent velocity. On the basis of the 
discussion of Batchelor (1967), the assumption that the velocity distribution is 
approximately solenoidal seems justified, because of the small values of 

uf2/a2 N lo-', /3ufIC?,R N and PO'IRPr = 

(a is the sound speed and Pr the Prandtl number). 
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FIGURE 4. Comparison between R(u, u) and R( 0,e) (computer plot). R(u, u): -, present 
results ( z / M  = 35); ---, Mills et al. (x /M = 17). R(0,e): -.-,present results ( z /M = 35), 
-.. -, Mills et al. ( z /M = 17). 

Figure 4 shows a typical comparison of the double correlations 

R(u, U )  = (u(t)u(t+r))/(u2) and R(8,O) = (O(t) e(t+T))/(62) 

a t  x/M = 35. Also shown is a similar comparison at x/N = 17 given by Mills et al. 
(1958). Our R(8,O) is larger than R(u, u) at small Ur/M and becomes smaller 
for UT/M 2 1-0. Similar behaviour is apparent in the data of Mills et al. However, 
the R(B, 0) obtained by them monotonically approaches a small positive value, 
whereas our R(8,8) passes through zero at  about Ur/M = 1.6, reaches a small 
negative maximum, and then returns to zero as Ur/M increases further. 

Figure 5 shows the values of (ue) at five positions downstream from the grid. 
In  contrast to the statement of Mills et al. that their (ue) was zero within the 
accuracy of their data, we find that, for 25 < x/M < 46.6, the measured cross- 
correlation (ue)/u'el is of order - 0.1. The values of (ue) approach zero fairly 
slowly as x/M increases further downstream. These non-zero values of (u8) 
indicate the degree of overall anisotropy of the present flow. To resolve this 
anisotropy in terms of wavenumber and to determine if the temperature field 
may still satisfy the necessary (but not sufficient) condition ( u O ) , ~  = 0 for local 
isotropy, the one-dimensional cross-spectrum of velocity and temperature was 
obtained from 

4,e(ki) = Ak(U2(ki) Ue(ki)) = Cdki)  + iQ,e(ki), 
where C,,(ki) and Q,e(kl) are the co-spectrum and quadrature spectrum, re- 
spectively. The coherence A2 and phase 4 are given in terms of the spectra: 

A2(k1) = l4ue(ki)  I2/4ii(kJ 4ee(kd and 4(ki )  = tan-' (Qdki I Icdki ) ) .  
The coherence plays the role of the cross-correlation of u and 8 a t  each wave- 
number. Both the coherence and the cross-correlation should be identically zero 
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X l M  
FIGURE 5 .  Cross-correlation between u and 0 at several values of %/At. 0,  (uS)/u'e', un- 
corrected measured value; A, (uO>,/u'e' corrected for the velocity sensitivity of the cold 
wire; ---, free-hand curve fit. 

for all k, for strictly isotropic fluctuations (a stronger condition than local 
isotropy). The data in figure 6 show that large eddies are responsible for anisotropic 
contributions to (u6> and that the small eddies do not contribute to (uQ. The 
negative correlation for small Ic, apparently indicates that the large eddies only 
very slowly forget their method of initial generation; i.e. one would expect 
negative correlation from the heated wakes of individual grid rods, in which the 
velocity is low and the temperature high relative to their meanvalues downstream. 

The fluctuation intensities (u2) and (02)  obtained at five locations downstream 
from the heated grid are shown and compared with those of Mills et al. in figure 7. 
The decay rates of the velocity and temperature fluctuations are nearly the same 
for the present data. Similar behaviour was noted for the corresponding range of 
x /M by Mills et al., who also noted that the decay rate of the temperature 
fluctuations decreased significantly relative to that of the velocity fluctuations 
for larger values ofx lM than those considered in the present investigation. From 
these values the rates of dissipation eu = -#d(u2)/dt and ce = -&d(82)/dt at 
x/M = 35 were calculated. These a,nd other basic parameters of the flow condi- 
tions are given in table 1. 

The three-dimensional energy spectra were determined from the measured 
one-dimensional spectra. Figures 8 and 9 show their absolute values at five 
xlM positions for temperature and velocity fluctuations, respectively. The eddy 
sizes I, = l/k, corresponding to spectral maxima and the integral scales L are 
shown in figure 10. The increase of 1, and L with x/M is due to the fact that 
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FIGURE 6. Coherence and phase difference of u and 15' (computer plot). 
-> A2(k1); - *  - >  $(kl)* 

x /M 

FIGURE 7. Decay of kinetic energy and temperature fluctuations downstream of the grid. 
(u2)/Us: 0, present results, grid hot; +, present results, grid cold; ---, Mills et al. 
(6'2)/ATi: 0,  present results; --- , Mills et al. 
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Velocity 
7-- - 
U 4.06 m/s 
M 4 em 
d 8mm 
u) = (d)' 0*08725m/s 

6, 0.0456m2/s3 
kk = (S,/V*)* 1872m-l 
l k  = Ilkk 0.534 ll~n 
Tk = (V/%)* 0.0187 s-l 
v k  = (euTk)l 0.0288m/s 
A, = (15V/€,)*U' 6.25mm 
RM = UM/V 10 500 
R, = u'A,/V 35.2 

V 1.55 10-5m2/~ 

K ,  = 9/55K2, 0.22 

TABLE 1.  Basic parameters of the flow conditions for heated-grid turbulence at  x / M  = 35. 
The subscripts k, B and C refer to parameters associated with Kolmogorov, Batchelor and 
Corrsin, respectively. Af is the Taylor microscale; h, is the Corrsin microscale. 
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FIGURE 8. Three-dimensional spectra of 
temperature fluctuations. 
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FIGURE 9. Three-dimensional spectra 
of kinetic energy. 

the small eddies decay more rapidly than the large ones, although the small ones 
continually obtain energy from the large ones. As shown in figure 10, a similar 
slow increase of L with x /M was obtained by Mills et al. We find that 1 ,  is larger 
for the temperature field than for the velocity field. 

The normalized energy spectra and dissipation spectra are presented in figures 
11 and 12. The normalizing parameters are defined in table I. The values at high 
wavenumbers are too small to be shown in these figures. For large wavenumbers, 
the energy spectra are in good agreement with the measurements reported in 
I and 11. There are large differences for small wavenumbers because of 
differences in turbulence intensities in the experiments, the inapplicability of 
the isotropic relations for such low wavenumbers, and the fact that Kolmogorov 
scaling is not expected to apply in this range. The values of k/kk corresponding to 
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FIU~RE 10. Eddy sizes 1, corresponding to  spectral maxima and integral scales L for 
temperature and velocity fluctuations. Present results: 0. lm*o/M; 0, lm,JM; A, L,/M; 
A, L,/M. Mills et al.: ---, L,/IM; ---, L,/M. 
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FIGURE 11. Normalized three-dimensional temperature and velocity spectra. kKEg( k)/Og: 
0 ,  present results. k ~ E , ( k ) / t & :  0, present results; -, Uberoi, x /M = 48; ----; 
Uberoi, x /M = 72; ----, Van Atta I% Chen (1969). 
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FIGURE 12. Normalized three-dimensional temperature and velocity dissipation spectra. 
2 v e k 2 E o / v ~ 8 ~ :  0,  present results. 2 ~ k ~ E , , / v 3 ~ :  0, present results; -, Uberoi, x / M  = 48; 
- -  - - ,Uberoi,z/M = 72;----,Uberoi,x/M = 1 1 0 ; - - - -  , Van Atta, & Chen (1969). 

the maximum values of the kinetic energy spectra are somewhat larger than those 
reported in I and 11, but the values of k/k,  for maximum dissipation are in 
close agreement. The dissipation spectra, which emphasize the higher wave- 
numbers, are in very good agreement with those of Uberoi (1963) over the entire 
range of wavenumbers. 

The rates of change of energy spectra aE,/at and aE,/at were determined from 
the relations 

The la.st expression is essentially the same as that in the procedure adopted in I 
and 11. Here we have used the average: 

where cc,(k) = a#,,/at = Ua#,,/ax is the total one-dimensional energy decay. 
The normalized results for a$,,lat and a$,,lat, as well as a comparison of $$% with 
the results of I1 are given in figure 13. 

The present data for aE,/at are compared with those reported in I and I1 
in figure 14. They are all in fairly good agreement for large wavenumbers, as would 
be expected for the locally isotropic range of wavenumbers. 

Energy transfer spectra 

The normalized one-dimensional energy transfer spectra L,(k) are shown in 
figure 15. As shown in figures 16 and 17, the corresponding measured triple corre- 
lations R(uO, 8) = (u(t) O(t )  O(t  + T)) /u 'Ot2 and R(u2, u) = (u2(t) u(t+ 7))/ut3 are 
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FIGURE 14. Decay rate of three-dimensional temperature and velocity spectra. (aE,/at)/ 
e&vK: 0,  present results. (aE,/at)/v&: 0, present results;-, Uberoi; 
Chen (1969). 
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FIGURE 15. One-dimensional transfer spectra of kinetic energy and temperature 
fluctuations. -, L,(kl)/v3K; -. -, Ls(k1)/vKe;. 

nearly antisymmetrical functions of Ur/M. These results indicate that the 
assumption of isotropy appears reasonably accurate for the triple correlations 
R(uO, 0) and R(u2, u), which are the physical space counterparts of the measurable 
one-dimensional energy transfer functions L,(k) and L u ( k ) ,  from which the three- 
dimensional energy transfer spectra T,(k) and Tu(k) may be determined. 

FIGURE 13. Decay rate of one-dimensional temperature and velocity spectra. - (a$,,/at)/ 
W K B ~ :  0 ,  present results. -(8#id/at)/w&: 0, present results; ----; Van Atta & Chen 
(1969). 
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FIQURE 16. Third-order mixed correlations of velocity and temperature fluctuations. 
R(u0,O): 0 ,  present results. R(O,u0): 0, present results; ---, Mills et al. 

FIGURE 17. Triple correlations of u. R(u2, u): A, present results; R(u, u2): a. present results; 
--, Frenkiel & Klebanoff; ---, Van Atta & Chen (1969). 

Also shown for comparison in figure 16 is the measured temperature-velocity 
triple correlation of Mills et al. at x / M  = 32. Their triple correlation has a maxi- 
mum value about half as large as ours. Attempts to rationalize this difference 
were impeded by the fact that the measurement of Mills et al. was complicated 
by a large number of isotropic assumptions about unmeasured correlations, 
a strong dependence of their mixed Correlation on the triple velocity correlation, 
which had to be subtracted from other measured quantities to obtain R(8, ue), and 
their operational difficulties associated with matching of hot-wire sensitivities. 
Another difference is that we measured a two-point time correlation with the 
sensors at  a single spatial location, while Mills et al. measured a two-point spatial 
correlation using a spatial separation of two wires. Useful speculation on the 
cause of the differences thus appears very difficult at this time. 

The three-dimensional energy transfer spectra Tn( k )  were directly measured 
using the method described in 9 5 and were also indirectly obtained by summing 
the experimentally measured aEn/at and 2vk2En(k),  assuming the validity of 
the isotropic relation 

aE,(E)/at = ~ , ( k )  - 2v,kz~,(k).  (40) 

The directly measured T,(k) for temperature and velocity, normalized with 
Kolmogorov scaling, are compared with those obtained by using the indirect 
method in figures I8 and 19. These comparisons may be used to estimate the 
extent of the validity of the isotropic relation (40) for the present heated-grid 
turbulence. The directly measured transfer spectra T,(lc) and those obtained 
from (40) are in good agreement with each other for nearly the entire wave- 
number range, except at  low wavenumbers (k/kk c 0.2)  and very large wave- 
numbers (Elk, > 1.4). The large inconsistency at  low wavenumbers k/k, < 0.1 
is most certainly due to the inapplicability of the isotropic relations used to 
derive E,(k), aE,/at and Tn(k) from the measured one-dimensional spectra at  
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FIGURE 18. Three-dimensional transfer spectra of temperature fluctuations. -, directly 
measured T,(k); ---, (aE,/at) + 2vokzE,. 
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FIGURE 19. Three-dimensional transfer spectra of kinetic energy. -, directly measured 

T,(k);  --- (aEU/at)+2vk2E,. 

low wavenumbers. The discrepancy a t  high wavenumbers is probably due to 
noise generated by uncertainty in the calibration curve fits, which will increase 
the measured values of E,(k), and may very well account for the fact that the 
sum 8 En/at+2vnk2E, is larger than the directly measured Tn(k). Thus, we 
may conclude that the present heated-grid-generated turbulence is closely 
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locally isotropic for both temperature and velocity fields for k/k, > 0.2. Van Atta 
& Chen found somewhat better agreement in this respect, but this is probably 
due to the fact that they measured velocity fluctuations only, for which the noise 
problem is less severe than for combined temperature and velocity measurements. 
For k/kk < 0-16, the net energy transfer at any given wavenumber k is negative, 
and for klk, > 0.16 the net transfer is positive. A broad maximum in the transfer 
spectra for temperature and velocity occurs in the neighbourhood Of klk, = 0.35, 
similar to the results of 11. The region 0.05 < k/k, < 0.1, where the measured 
transfer spectra have large negative values, is of less significance since the 
turbulence is not locally isotropic for such low wavenumbers and use of the iso- 
tropic relations to derive T,(k) probably produces inaccurate results. Also, the 
rapid change of L,(k) in the neighbourhood of klkk = 0.08 may produce un- 
acceptably large uncertainties in the differentiation and hence in T!(k) .  Therefore, 
these large negative values of T,(k) are not presented in the figures. Because of 
these difficulties a t  low wavenumbers the measured transfer functions do not 
satisfy the zero integral condition of isotropic theory, 

jomT(k,t)dk = 0, 

as discussed in some detail by Van Atta & Chen (1969). For the present data, the 
positive contribution of To(k) to the integral is roughly 50% larger than the 
negative contribution, while the negative contribution from T,(rE) is roughly 
10 yo greater than the positive one. 

The occurrence of only a single value of k where T,(k) = 0, instead of an ex- 
tended region of k for which T!(k) = 0, may be considered as direct evidence for 
the non-existence of an inertial-convective subrange, or an inertial subrange in 
the present flow field. Similar results were obtained in I and 11. 

The directly measured T,(k) are compared with those reported in I and I1 
in figure 20. Except at low wavenumbers, the present T,(k) are in fairly good 
agreement with those of Uberoi for nearly the entire range of wavenumbers 
and slightly different from those of Van Atta & Chen at  moderate wavenumbers. 
All are in very good agreement at larger wavenumbers, where the data represent 
the universal energy transfer spectrum. 

Comparison of measured T@(k) with hypotheses 

In studying the problem of spectral transfer of kinetic energy, various in- 
vestigators have proposed hypotheses relating T,(k) with E,(k). Some (Obukov 
1949; Corrsin 1951) have pointed out that it may be possible to make similar 
postulates for temperature fluctuations mixed by turbulence, since the temper- 
ature transfer mechanism is essentially determined by the same mechanism, 
Details of the extension of several of these hypotheses to the scalar case are given 
in the appendix. 

One should keep in mind that all these theoretical predictions are essentially 
conjecture, and that a considerably more satisfactory type of theoretical com- 
parison would be to compare the measured results with more rigorous calcula- 
tions, based on the Navier-Stokes equations, which do not involve arbitrary 
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FIGURE 20. Comparison of the measured velocity transfer spectra with previous measure- 
ments. -,present measurements; ---, Van Atta & Chen (1969). Uberoi:--- , x / X  = 48; 

, x/M = 72. 

constants. For the case of spectral kinetic energy transfer, calculations of this 
nature by Kraichnan (1964) using the direct-interaction hypothesis were found 
in I1 to be in good agreement with the measured T,(k), and it is most desirable 
at  this point that theoretical calculations of this type be attempted for the 
scalar case. 

The measured E,(k) and E,(k) were used to calculate transfer spectra T,(k) 
according to the extended hypotheses and the results are compared with the 
measured T@(k) in figures 21 and 22. The universal constant a in each hypothesis, 
except that of Onsager and Corrsin, can assume a wide range of values depending 
on the region of k over which the prediction is made to fit the measurements. This 
is a major disadvantage of these theories. Of course, none of them fits the low 
wavenumber region of the data. For the Kovasznay-Onsager hypothesis no 
values for a can be found that will produce a good fit to the data. Heisenberg’s 
theory fits the data for large wavenumbers fairly well by using cx = 0.6. Uberoi 
and Van Atta & Chen found similar agreement with Heisenberg’s hypothesis 
for the velocity field, with a = 0.2 and 0.25, respectively. The expression given 
by Onsager and Corrsin fits the high wavenumber data best if we choose a = 0.5. 
The expression contains no unknown constants, other than the ‘Obukhov- 
Corrsin constant’, (a = l/Ko,3). Referring to table 1, the value of a obtained 
from fitting the measured transfer function is roughly one third of the value 
obtained from K6,3. Similar behaviour of a 2: (2K3)-l was found by Van Atta & 
Chen for the velocity field, where K ,  is the three-dimensional Kolmogorov 
spectral constant for velocity. As shown in figure 22, the modified version of the 
Obukov hypothesis produces fairly good agreement at  high wavenumbers, but 
increases the discrepancy at  low wavenumbers, while neither curve due to 
von Rarmhn ( I  = m = 0,  n = &; I = n = 9, m = 0) fits the data. 

17 F L M  58 
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FIUURE 21. Comparison of the temperature transfer spectrum with T,y(k) computed from 
measured E,(k) and EO(7c) using various hypotheses. -, directly measured TO; - --, 
Onsager-Corrsin, a = 0.5; ---, Heisenberg, a = 0.6; -. -, Kovasznay-Onsager, a = 0.3. 
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FIGURE 2 2 .  Comparison of the temperature transfer spectrum with Te(k)  computed from 
measured T J k )  and E,(k) using various hypotheses. -, directly measured T,(k); - --, 
modified Obukov, a = 0.3; -. -, von Khrmhn, a = 0.35; -. . -, von K h r d n ,  a = 0.2. 
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7. Summary and conclusions 
For locally isotropic, homogeneous fluid turbulence, the imaginary part of the 

cross-spectrum S , ,  n(kl), which is needed to obtain the spectral transfer function 
T,(k) for either the kinetic energy or a passive scalar property, can be obtained 
in several ways: by integration of the imaginary part of a particular one- 
dimensional bispectrum, from the Fourier transform of a particular two-point 
triple correlation, or by a direct cross-spectrum estimate. The Iast method is the 
most direct one for obtaining T,, and was used to determine experimentally the 
spectral transfer functions Tn(k) for velocity and temperature fluctuations in 
heated-grid turbulence. 

For both the temperature and velocity fields, the measured spectral transfer 
functions are adequately described by the spectral energy balance equations 
for isotropic turbulence for klk,  >, 0.2. The measured velocity transfer spectra 
are generally consistent with those obtained by Uberoi and Van Atta & Chen, 
and at large wavenumbers, in the viscous range, all these transfer spectra are 
universally similar. 

Among the various physical hypotheses for spectral transfer, those of Heisen- 
berg, and Onsager and Corrsin produce the best fit to the measured temperature 
transfer spectra. Direct calculations for the temperature field in decaying iso- 
tropic turbulence would furnish a more useful comparison than the physical 
hypotheses, and it is hoped that these will soon become available. 
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Appendix. Hypotheses for spectral transfer 
Heisenberg’s hypothesis 

Corrsin (1951) has extended Heisenberg’s (1948) hypothesis to scalar quantities 
and assumed that the scalar transfer is due to the small eddies acting on the large 
ones to produce a kind of turbulent diffusion. 

Taking 
v 

JkmT’(k) dk = 2s,(k) 

where e.,(k) is the turbulent diffusivity caused by the small eddies, dimensional 
considerations suggest that 

Thus, 

17-2 
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and this gives 
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T,(k) = 2a((Eu/k3) t fhkzEedk-kBE,f~m 0 (EJk3)"dk).  (A 2) 

&sager-Corrsin hypothesis 

In a variation on a previous theme of Onsager (1949) and Corrsin (1964), Pao 
(1965) assumed that o ( k ) ,  the rate at which scalar spectral elements we trans- 
ferred to a larger wavenumber k, is dependent on E ,  and k only. Dimensional 
reasoning gives cr(k) = a€;#. Thus the scdar spectral flux across k is 

jkaTe(k)dk = a(k)Ee = a&k*E,, (A 3) 

(A 4) 
and this gives 

T,(k) = - mi k$E,($ + d In E,/d In k ) .  

Hodijied Obukm hypothesis 

Obukov's (1941) original hypothesis leads to a physically impossible form for 
the spectrum, and the integral of the transfer function falls to zero at a value of k 
where the spectrum is finite (Batchelor 1953; Ellison 1962). This problem can be 
avoided by using Ellison's modification of Obukov's theory, namely, that the 
fluctuating stress is produced only by eddies in the neighbourhood of k and not 
by all eddies equally, and is taken to be proportional to k(E,E,)*. Thus, we have 

and 

where A ( k )  = [? f~k2Eodk] ' ,  

Kovasxnay-Onsager hypothesis 
Corrsin (1961) has followed Onsager's hypothesis (1945, 1949), which is exactly 
equivalent to the Kovasznay (1948) hypothesis, and assumed that the scalar 
spectral flux depends on the spectra E,  and E ,  and wavenumber k only, and 
not on v and v,. Thus, the only possible dimensional form for the scalar transfer 
function is 

which gives 

Ik*T,(k)dk = aE,Eik$,  

Von Kdrmdn's hypothesis 
A general expression for scalar spectral flux following von Kkmtin's postulates 
(1948) is written as 
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For 1 = rn = 0 and n = i, one obtains a modified Kovasznay-Onsager ex- 
pression, and for 1 = n = Q and rn = 0, a modified Obukov expression. For 1 = 1, 
m = 0 and n = 2, one obtains the Heisenberg hypothesis. 

R E F E R E N C E S  

BATCHELOR, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University 

BATCHELOR, G. K. 1959 J. Fluid Mech. 5, 113. 
BATCRLEOR, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press. 
BRILLINGER, R. R. 1965 Ann. Math. Statist. 36, 1351. 
COMTE-BELLOT, G. & CORRSIN, S. 1971 J. Fluid Mech. 48, 273. 
COOLEY, J. W. & TUKEY, J. W. 1965 Math. Comp. 19,297. 
CORRSIN, S. 1947 Rev. Sci. I s t .  18, 469. 
CORRSIN, S. 1949 N.A.C.A. Tech. Note, no. 1864. 
CORRSIN, S. 1951 J. Appl. Phys. 22, 469. 
CORRSIN, 8. 1961 J. Fluid. Mech. 11, 401. 
CORRSIN, S. 1964 Phys. Fluids, 7, 1156. 
CORRSIN, 8. & UBEROI, M. S. 1951 N.A.C.A. Rep. no. 1040. 
ELLISON, T. H. 1962 Me'caniipue de la Turbulence p. 113. Paris: C.N.R.S. 
FRENKIEL, F. N. & KLEBANOFF, P. S. 1967 Phys. Fluids, 10, 507. 
GIBSON, C. H. & SCHWARZ, W. H. 1963 J. Fluid Mech. 16, 357. 
HAUBRICH, R. A. 1965 J. Geophys. Res. 70, 1415. 
HEISENBERG, W. 1948 Proc. Roy. SOC. A 195, 402. 
HINZE, J. 0. 1959 Turbulence. MoGraw-Hill. 
KIDRON, I. 1966 DISA Inf. 4, 25. 
KISTLER, A. L., O'BRIEN, V. & CORRSIN, S. 1956 J. Aero. Sci. 96. 
KOVASZNAY, L. S. G. 1948 J .  Aero. SOC. 15, 745. 
KRAICHNAN, R. 1964 Phys. Fluids, 7, 1030. 
LIN, C. C. 1953 Quart. Appl. Math. 10, 295. 
LUMLEY, J. L. 1965 Phys. Fluids, 8, 1056. 
MILLS, R. R., KISTLER, A. L., O'BRIEN, V. & CORRSIN, S. 1958 N.A.C.A. Tech. Note. 

no. 4288. 
MONIN, A. S. & YAGLOM, A. M. 1967 Statistical Hydrodynamics. Part 2, Mechanics of 

Turbulence (in Russian). Mosoow : Science Publishers. 
OBUKOV, A.M. 1941 C. r .  Acad. Sci. U.S.S.R. 32, 19. 
OBUKOV, A. M. 1949 Izv. A W .  Nuuk. 13, 58. 
ONSAGER, L. 1945 Phys. Rev. 68, 286. 
ONSAGER, L. 1949 Nuovo Cimento, Suppl. 6, 279. 
PAO, Y. H. 1965 Phys. Fluids, 8, 1063. 
ROBERTSON, H. P. 1940 Proc. C m b .  Phil. SOC. 36, 209. 
ROSENBLATT, M. & VAN NESS, J. W. 1965 Ann. Math. Statist. 36, 1120. 
STEWART, R. W. 1951 Proc. Camb. Phil. SOC. 47, 146. 
STEWART, R. W. & TOWNSEND, A. A. 1951 Phil. Trans. A 243, 359. 
TOWNSEND, A. A. 1947 Proc. Camb. Phil. SOC. 44, 560. 
UBEROI, M. S. 1963 Phys. Fluids, 6, 1048. 
UBEROI, M. S. & CORRSIN, S. 1953 N.A.C.A. Rep. no. 1142. 
VAN ATTA, C. W. & CHEN, W. Y .  1968 J .  Fluid Mech. 34, 497. 
VAN ATTA, C. W. & CHEN, W. Y. 1969 J. Fluid Mech. 38, 743. 
VAN ATTA, C. W. & YEH, T. T. 1970 J .  Fluid Mech. 41, 169. 
VON -MAN, T. 1948 Proc. Natn. Acad. Sci. 34, 530. 
YEH, T. T. 1971 Ph.D. thesis, University of California, San Diego. 

Press. 


